
Introduction

The quality, quantity and type of vegetation in arid
rangelands are usually affected by soil properties. Since soil
mapping is a critical step in landscape ecology and range-
lands rehabilitation, there is an increasing need to measure
and map soil properties in natural ecosystems [1-5]. 

Geostatistics and remote sensing are among the tools that
have been successfully used for soil mapping on a large scale
[6-8]. Geostatistical approaches in which environmental vari-
ables and remote sensing data correlations are taken into
account have become increasingly popular. This is because
of employing secondary information that is often available at
finer spatial resolution than that of the sampled target vari-
able. Such techniques generally generate more accurate
results than those of the univariate methods (for example
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Abstract

The aims of this study were: 1) to map the different soil parameters using three geostatistical approach-

es, including; ordinary kriging (OK), cokriging (CK), and regression kriging (RK), 2) to compare the accura-

cy of maps created by the mentioned methods, and 3) to evaluate the efficiency of using ancillary data such

as satellite images, elevation, precipitation, and slope to improve the accuracy of estimations. In the rangelands

of the Poushtkouh area of central Iran, 112 soil samples were collected. The maps of different soil parameters

were created using the mentioned methods. To assess the accuracy of these maps, cross-validation analyses

were conducted. The cross-validation results were assessed by the root mean square error (RMSE) and nor-

mal QQ-plot together with sum and average error to suggest the best estimation approach for mapping each

soil parameter. The results have shown that, in most cases, taking the ancillary data into account in estimations

has increased the accuracy of the created maps. Except for clay, the OK method was suggested as the best esti-

mation method, and the RK and CK were the best recommended estimation methods for the rest of the para-

meters. The results suggest the application of the framework of this study for similar areas. 
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ordinary kriging) when the correlation between primary and
secondary variables is significant [9-12]. The application of
hybrid methods for soil mapping has represented consider-
able success in several documented studies [13-16].

Several ancillary data can be used for digital soil map-
ping. Digital elevation model (DEM), slope, precipitation,
remotely sensed images, and measured soil properties are
potential ancillary data for such applications [8, 15, 17, 18].
It should be evaluated which ancillary data increase the
estimation accuracy of a primary variable at unsampled
locations in each study area [15].

Examples of geostatistical hybrid methods that account
for environmental correlation are cokriging and regression
kriging [9, 11, 19]. The difference among these methods is
in the assumptions of the way that the primary and ancillary
data are related and how the estimation of primary data is
inferred from the secondary data [8, 9]. Various studies
have proven the existence of spatial correlation in different
soil parameters [1, 7, 11, 20, 21]. 

The main purposes of this research were: 
1) Mapping different soil parameters using three geostatis-

tical approaches (OK, CK, and RK).
2) Evaluating the benefits of using ancillary data such as

satellite images, elevation, precipitation, and slope in
improving the accuracy of estimation maps.

3) Comparing the accuracy of the maps created by the
mentioned approaches.

Materials and Methods

Study Area

This research was conducted in the Poshtkouh range-
lands on the southern slopes of the Shirkouh mountains of
Yazd province in central Iran (31º33′ 1″ N, 53º40′06″ E -
31º04′27″ N, 54º15′19″ E). Fig. 1 displays the general loca-
tion of the study area, which is characterized by very
diverse terrain conditions. The maximum elevation of the
region is 3,990 m and the minimum elevation is 1,400 m.
Thus, average annual precipitation is about 300 mm in

Shirkouh Mountain in the northern part of the study region,
whereas in the margin of Kavir-e-Abarkouh (in the south-
ern part of the region) it decreases to 45 mm. Similarly,
average annual temperature shows large differences in the
study region ranging from 17.1 in the southern part to
10.8ºC in the northern part, with absolute minimum and
maximum temperatures of 0.2 and 29.4ºC. 

Soil and Landscape

Soil Classification and Landscape

This area has five dominant physiographic units: moun-
tain, alluvial fans, plateaux, piedmont plain, and low land.
The geology of the mountain is granite, reddish limestone,
conglomerate, and marl. Alluvial fans, plateaux, and pied-
mont plain are developed on alluvial deposits of quaternary.
Low land has a salty clay flat foundation. 

As mentioned before (study area) the environmental
variables such as elevation, precipitation, and temperature
have a high variability in the study area, causing a high spa-
tial variability of soil classes and properties in the region.
According to the soil taxonomy [22], the soil moisture
regimes of the area are aridic and aquic, and temperature
regime of the area is thermic. The taxonomic classification
[22] of the major soils found in the study area respectively
identified Entisols and Aridisols as the smallest and largest
in relative abundance. Entisols are located in the mountain
physiographic unit of the study area. Typic Torriorthents are
the dominant soil in this unit. Aridisols contain several
soils, which are Typic Calcigypsids, Typic Haplocalcids
and Typic Aquisalids. Typic Calcigypsids and Typic
Haplocalcids are the dominant soils that have developed in
plateaux and piedmont plain units, whereas Typic
Aquisalids are located in the lower part of the region, called
low land or playa. Alluvial fans have a complex soil that
include Typic Torriorthents and Typic Calcigypsids. As
expected, the soils that have formed in the upper part of the
region have a high content of gravel and sand, whereas the
soils in the lower part of the study area have high clay and
salt content. 
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Fig. 1. General location of the study area.



Soil Data Collection and Examination

In order to take samples from homogeneous units, hyp-
sometric, aspect, slope, and geologic maps were overlaid.
Then 3-5 parallel transects of 300-500 m length were locat-
ed in each unit. A total of 112 soil samples were collected
at 0-30 cm depth (Fig. 2). In the next step, all of the required
soil parameters such as available moisture (AM), clay, elec-
trical conductivity (EC), gravel, gypsum (Gyps), sand, and
lime were measured in soil laboratory.

Ancillary Data 

In this study, satellite images (Landsat ETM+) and
some environmental variables (e.g. elevation, slope, and
precipitation together with soil parameters) were used as
ancillary data. ETM+ images contained three visible bands
(blue, green, and red), one near the infrared band, two
shortwave infrared bands (MIR-1 and MIR-2), a thermal
infrared band, and a panchromatic band. Using digital topo-
graphic maps, the images were geo-referenced. Then, digi-
tal number (DN) values converted to reflectance. In the
next step, the normalized difference vegetation index
(NDVI) was calculated based on red and near infrared
bands. The NDVI was added as an additional band to the

bands set. All of the remote sensing analyses were done in
ENVI 4.8. The digital elevation model (DEM) and slope
map of the study area were created by the means of digital
topographic maps with scale of 1:10,000 in Arc GIS 10.
Based on climatic data of the study area, a precipitation
map was created using the cokriging method in combina-
tion with the DEM as the secondary variable.

Descriptive Statistics

The descriptive statistical evaluation is an important
step prior to any geostatistical analysis. One of the essential
univariate statistics is variance, which is usually applied in
estimating the semivariogram sills. It is especially impor-
tant in recognizing the existence of any considerable trend
in each variable when the semivariogram is consistently
exceeding the predicted sill.

Bivariate statistical analysis, as the next step, is usual to
distinguish the integration capability of secondary data in
estimation problems. Among bivariate analyses, regression
and correlation analyses have become popular to quantify
the relationship between soil parameters and other environ-
mental variables. Regression technique is a useful means to
select the variables correlated with soil parameters. The
SPSS statistical software can be used for this purpose. In
the stepwise regression the best combination of ancillary
variables which give the highest R2 and acceptable signifi-
cance level would be selected.

In order to use ancillary variables for soil parameters
mapping, the following process was done:
- Using the geographic information system, data set of

each soil parameter was combined with the ancillary
variables of the field samples. Then, the pixel values of
the related points were extracted.

- To prepare data for statistical analysis, a matrix was
constructed. In this matrix, the X- and Y-coordinates
were recorded in the first two columns. The measured
soil parameter values were placed in the next columns,
and the different ancillary data of pixel values were put
in the remaining columns. The rows of the matrix rep-
resent the number of sample points. This is in accor-
dance with the method used by Eldeiry and Garcia [7].

- Pearson correlation coefficient was used to identify the
correlation coefficient between the measured soil para-
meters and ancillary data (Table 1), which should be
used in cokriging. 
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Fig. 2. Location of sample points in the study area.

Table 1. Descriptive statistics of soil parameters.

Soil parameter

Descriptive statistics
AM Clay EC Gravel Gyps Sand Lime

Min 0.20 6.2 0.1 0 0 26.40 0.42

Max 15.12 30.5 136.32 28.65 4.19 88.80 46.35

Mean 3.38 13.57 11.64 11.67 .570 71.67 14.36

Std. Deviation 2.84 6.02 26.87 5.9 1.16 14.34 10.72

Variance 8.07 36.27 722.28 34.88 1.35 205.91 115.06



- To select suitable parameters and model for predicting
and mapping the soil parameters, the simple and the
stepwise regression were applied. Finally, regression
models that had the highest correlation with the mea-
sured soil parameters data were selected to be used in
the regression kriging.
SPSS and Excel software were used for the mentioned

statistical analysis.

Geostatistical Analyses

Geostatistical analyses have been conducted in three
stages of variography, model evaluation, and estimations. A
more comprehensive explanation about each step comes
below. 

Variography

Semivariogram is one of the most essential tools in geo-
statistical analyses to quantify and model the spatial vari-
ability degree of data. These models can later be used to
make estimations using kriging, cokriging, etc.

The experimental semivariogram (γ*(h)) for a regional-
ized variable of Z can be defined as follows:

(1)

...where N(h) is the number pairs of data locations separat-
ed by the vector h [23].

To deduce the semivariogram values in all points and all
directions and to smooth out the effects of fluctuations and
ensure the positive definiteness property of semivari-
ograms, analytical models should be fitted to the experi-
mental (or sample) semivariograms.

This analysis of semivariogram behavior and fitting
analytical model is termed variography [9, 23].  

Stationarity is one of the most essential presumptions in
geostatistical analyses. It implies that the statistics (such as
mean, variance, and so on) are independent of the location
of its calculation. Accordingly, the first- and second-order-
moment rules should remain invariant.

In the cease of non-stationarity, in which the relevant
statistical moments show a dependence on the location, a
characteristic so-called trend exists in data-set.

One of the most practical tools to indicate the existence
of a trend in a data-set is its semivariogram. The sample
semivariogram and its theoretical sill should be plotted and
the general behavior of the semivariogram plot relative to
the theoretical sill should be evaluated. If the sample vari-
ogram increasingly exceeds the expected sill (σ2), the exis-
tence of a trend can be inferred. 

In this study, using semivariogram analyses, spatial
variability structure of each attribute was determined and
proper semivariogram models (e.g., spherical, Gaussian,
exponential) were fitted (Table 2).

The mentioned analyses were conducted using ArcGIS
10, and GS+ 5.1.1 software.

Model Evaluation or Accuracy Assessment:

To ensure that the variogram models being applied in
the estimation stages are reliable and appropriate, the vari-
ogram models have to be validated first. The validation of
the variogram models was done using the cross-validation
technique.

Cross-validation is a “leave-one-out” technique in
which each sample (with the known variable) is omitted
once and its value is estimated using the rest of the samples
with different semivariogram models and parameters [14]. 

In order to evaluate the cross validation results, in the first
step, scatter plots of measured vs. estimated were evaluated.
Then, root mean square error (RMSE), sum errors, average
errors, and QQ-plots of cross-validations were simultaneous-
ly applied to decide about the best estimation method.

Each of the above-mentioned criteria reflects a side of
estimation accuracy. For example, RMSE can describe the
distance between measured and estimated values.
Furthermore, sum errors, average errors, and QQ-plots rep-
resent the normality of estimation errors distribution.

Estimation Methods

The kriging method is applied to estimate the values at
unsampled locations by a weighted linear combination of
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Table 2. Parameters of semivariogram analysis for soil parameters.

Soil parameter
Semivariogram

model
Nugget effect 

(C0)
Sill 

(C0+C)
Structured part-to-sill ratio

(C/[C0+C]) Effective Range

AM Spherical 0.01 7.22 0.99 19770

Clay Spherical 0.1 35.1 0.99 21420

EC Exponential 1 587.50 0.99 20400

Gravel Spherical 0.01 31.26 1 18090

Gyps Spherical 0.001 1.18 0.99 25950

Sand Spherical 105 620 0.83 94600

Lime Spherical 21.30 243.50 0.91 97920

C0 – Nugget effect, C – Structured part of the semivariogram (=sill-C0)



nearby samples. The kriging equations guarantee the two
main characteristics of unbiasedness and minimum errors
in estimations. To achieve the mentioned weights for this
estimation, semivariogram models are required [24]. Based
on the variation of mean value, the kriging methods can be
classified into several techniques such as ordinary kriging,
simple kriging, and universal kriging.

Cokriging is an extension of kriging method in which
the correlation between primary and secondary data is
taken into account. The application of this method can
enhance the quality of estimations.

In this study, three estimation approaches, including
OK, CK, and RK, were applied.

Ordinary Kriging (OK)
In OK the mean value of regionalized variable is con-

sidered constant and unknown throughout the study area.
The application of OK is proper when the stationarity con-
dition is nearly fulfilled.

Cokriging (CK)
CK makes the estimations based on probable correla-

tion between the variable of interest and other measured
variables such as remote sensing and elevation data [13].
CK is among the useful techniques that can be used in esti-
mation when both primary and secondary variables exist,
and it has been used widely in soil science [25-27]. 

In the present research, the variables that represented
the highest significant correlation coefficient with the vari-
able of interest which generated the most accurate CK maps
were selected as ancillary variables for the application in
CK method. The RMSE was employed as the criteria to
evaluate which CK map was the most accurate.

Regression Kriging
Regression kriging (RK) is an estimation method that

makes use of the combination of a regression predictor (of
a primary variable, using ancillary variables) with kriging
of the regression residuals. The advantage of the RK
method is using ancillary variables such as elevation and
remote sensing data to improve the accuracy of estimation
for primary variables. This method is equivalent to univer-
sal kriging and kriging with external drift, where ancillary
predictors are used to estimate the means of the primary

variable in kriging equations [15, 28]. It uses the ancillary
data to characterize the spatial trend of the primary variable
in a regression step before carrying out the simple kriging
on the residuals and adding back the trend value to the esti-
mation of residuals [9]. 

In this research, in order to perform RK, the regression
analysis was performed to estimate the trend of primary
variables and residuals. Then, simple kriging on the resid-
uals was carried out. The final estimate of every soil vari-
able was achieved by adding the approximated trend to
the estimate of the residuals calculated by simple kriging
[9, 29].

The estimation parameters such as cell size and number
of neighboring data were the same for all of the methods
(OK, CK, and RK) applied in this study.

Soil Texture Map

In rangeland management and landscape ecology, in
addition to the aforementioned soil maps, soil texture map
is also beneficial for different applications such as to inves-
tigate the relation between soil and vegetation as well as
rehabilitation of the area. In this step, the created maps of
clay and sand were integrated into the GIS environment to
create the soil texture map. To do so, a script in ILWIS soft-
ware was created and employed. The resulting map repre-
sents homogeneous soil texture units.

Results and Discussion

Prior to any geostatistical analysis, it is of vital impor-
tance to evaluate some general statistical characteristics of
data, such as data distribution and variance. In addition,
some characteristics of important measures such as semi-
variogram sills can be approximated by the variance of
related data (σ2). Table 3 represents some descriptive statis-
tics of soil parameters. Based on the table, EC and Gyps
demonstrate the highest and lowest variances, respectively.
It is expected that across the study area these parameters
would also represent the highest and lowest variations,
respectively.

According to the discussion in the material and meth-
ods, the stationarity condition of data has been evaluated by
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Table 3. Best regression equations between soil parameters and ancillary data.

Regression equation R2

AM = -7.58 × Band7 – 0.12 × Band62 + 0.22 × Clay + 1.14 × Gyps + 8.32 0.86

Clay = 15.8 × Band5 – 0.43 × Gravel + 1.17 × AW + 9.91 0.67

EC = 229.73 × Band4 – 283.82 × Band7 – 0.015 × Elevation + 3.26 × AW + 37.35 0.83

Gravel = -0.79 × Clay+22.46 0.78

Gyps = -6.98 × Band1 – 0.23 × Band61 – 0.002 × Elevation + 0.27 × AW + 12.77 0.84

Sand = -0.006 × Elevation – 0.23 × EC – 1.49 × Clay + 106.74 0.81

Lime = -0.22 × EC1 – 0.02 × Elevation + 64.88 0.59



examining the general behavior of the semivariograms rel-
ative to their theoretical sills. This evaluation does not
reflect the existence of any considerable trend in the soil
parameters (Fig. 3).

The spatial dependence of each soil attribute was mod-
eled using analysis of semivariance. Parameters of semi-
variogram analysis for various soil attributes have been rep-
resented in Table 2.

In this stage, the quality of each semivariogram model
was assessed and the model semivariogram parameters
improved by cross-validation method and RMSE criterion
for different estimation methods (OK, CK, and RK). The
semivariogram interpretations have also been considered

during this variography stage. Table 4 and Fig. 5 illustrate
the cross-validation results.

Fig. 3 shows experimental semivariograms of each soil
parameter and their corresponding models. Each variogram
shows and evaluates the spatial structure of data. 

One of the most essential considerations in semivari-
ogram modeling is bearing in mind the semivariogram
interpretation and the expert’s knowledge and experience
about the study area. Usually, there could be a big uncer-
tainty in semivariogram modeling since the data from soil
samples can rarely reflect the existing soil condition suffi-
ciently. Hence, the linkage between the soil characteristics
and the semivariogram behavior should be understood very

742 Hosseini S. Z., et al. 

Fig. 3. Semivariogram of different soil parameters.



well before and during the semivariogram modeling by
considering the parameters such as nugget effect, range,
and anisotropy. Conversely, the semivariograms and their
models can be employed to understand the behavior of the
data structure. 

It is clear in the semivariograms (Fig. 3) that all of the
parameters have a spherical model except EC, which has an

exponential model. The exponential model usually repre-
sents the quick variation in data. The field observations in
this study and previous reports [30] from this area confirm
this variability behavior of the EC.

The ratio of the structured part of the semivariogram to
sill (C/[C0+C]) was considered as a criterion to evaluate the
strength of the spatial variability structure of each semivari-
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Table 4. Pearson correlations between target and secondary variables used in CK.

Target variable AM Clay EC Gravel Gyps Sand Lime

Secondary variable Band1 AM AM Band2 Band1 Clay Precipitation

Correlation coefficient 0.55* 0.82** 0.69** 0.62* 0.47** 0.87** 0.69**

*Statistically significant at p > 0.05, **Statistically significant at p > 0.01.

Fig. 4. Created maps of different soil parameters with highest accuracy.



ogram. Hence, the bigger this ratio, the stronger the spatial
autocorrelation of the variable. According to Table 2, most of
the parameters have a similar structure-to-sill ratio. Based on
this ratio, gravel has represented slightly a stronger spatial
variability structure compared to the others. 

Semivariograms of sand and lime have demonstrated
the highest effective range among all soil parameters,
showing the higher degree of continuity for these variables.
Gravel semivariogram has the shortest effective range rep-
resenting that the change of this parameter in very short-
distance is higher than the others. 

Among the investigated variables, the semivariogram
models of sand and lime have represented the highest
nugget effect. This might be interpreted as the existence of
rather high spatial variations of Sand and Lime in very short
distances (lower-than-average sample spacing) compared
to those of the others.

Table 3 summarizes the best regression equations
between soil target parameters and ancillary data. As can be
seen from this table, most of the models have high R2 val-
ues, demonstrating good prediction power of the regression
model for related soil properties.

Referring to the table, EC, Gyps, and Lime have a neg-
ative relationship with elevation. This could be due to the
fact that leaching causes the salts to move from highlands
and mountainous areas to the lowlands. Consequently, the
lower the elevation, the higher the concentration of salts.

This feature also has been reflected in the corresponding
estimation maps (Fig. 4).

The results of Pearson correlation coefficient were used
to select proper secondary variables in CK analysis so that
the selected variables (as secondary) had the highest signif-
icant correlation coefficient with the target variable. Among
the mentioned secondary variables, the ones that produced
the CK maps with the lowest RMSE were suggested to be
used in estimation of the target variables using CK. Table 1
summarizes the selected variables for CK based on the
mentioned method and the corresponding correlation coef-
ficient with each target variable.

As the table shows, ancillary data are significantly cor-
related to the target variables. These significant correlations
can suggest the ancillary data that could be cooperated in
CK estimation to improve prediction accuracy.

Table 4 demonstrates the root mean square error
(RMSE), along with the sum and average error for the com-
pared prediction methods when estimating the soil parame-
ters. As the table shows, the mentioned criteria for different
soil parameters are different in different prediction
approaches.

As mentioned in the material and methods, RMSE and
QQ-plots (Fig. 6), together with the sum and average errors,
were considered to suggest the best estimation methods
(Tables 4 and 6). About AM, sand, and lime, all the afore-
mentioned criteria suggest the same method as the best esti-
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Error 
measure

Soil parameter 

Estimation method
AM Clay EC Gravel Gyps Sand Lime

RMSE

OK 0.89 2.38 11.40 1.96 0.34 12.73 7.59

CK 0.74 1.85 11.47 1.8 0.33 9.32 7.22

RK 0.92 1.72 14.29 1.12 0.38 5.90 6.32

Sum error

OK 1.20 3.18 20.59 -4.22 0.11 -10.66 1.15

CK 0.70 4.55 21.92 -2.74 0.25 6.53 -2.47

RK -1.25 -6.54 5.33 3.20 1.77 -4.64 1.17

Average
error

OK 0.01 0.02 0.18 -0.03 0.009 0.16 0.01

CK 0.006 0.04 0.19 -0.02 0.002 0.10 -0.03

RK -0.01 -0.05 0.04 0.02 0.01 -0.007 0.01

RK 6.32 5.90 0.38 1.12 14.29 1.72 0.92

Table 5. Error measure for the compared prediction methods.

Table 6. The suggested method for mapping each soil parameter based on different criteria.

Soil parameter
Suggested method  based on  

AM Clay EC Gravel Gyps Sand Lime

Only sum/average error CK OK RK CK OK RK RK

Only RMSE CK RK OK RK CK RK RK

Sum/average error, RMSE, and QQ-plot CK OK RK RK CK RK RK
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mation approach. For clay and EC, because the QQ-plots as
well as the sum and average errors represented more
acceptable values, in spite of their lower RMSE, OK and
RK were suggested as the best estimation methods, respec-
tively (even though RMSE values for estimating these two
soil parameters were not notably different). For suggesting
the best estimation method for Gyps, the QQ-plot was the
determining factor (Fig. 6). This is because the sum error
for estimating the Gyps by the RK was rather larger than
those of the OK and CK methods, while the sum error and
RMSE values were not dramatically different. About
Gravel, the difference in RMSE for the RK with those of
the OK and CK approaches was rather considerable, where-
as the QQ-plots (Fig. 6), along with the sum and average
errors of them, do not represent remarkable differences.

Fig. 4 illustrates the best estimation soil attribute maps
selected from different estimation methods (OK, CK, and
RK). This selection was based on the aforementioned crite-
ria (Table 6).

Table 7 summarizes the abbreviations of soil texture
map legend. According to the maps, the highest values of
AM, Clay, EC, and Gypsum are related to the southwest of
the study area. This part of the area is located in lowlands
with lowest elevation, highest level of ground water, and
high concentration of salts [30]. Other studies also suggest-
ed similar results [31, 32]. Hydrologic processes can be
suggested as one of the main factors that can affect the soil
properties in the study area. These processes can directly
influence the weathering, decalcification, and clay illuvia-
tion. Consequently, soil properties would represent notable
variations from the mountainous areas to the lowlands.

Fig. 5 shows the scatter plot of estimated versus mea-
sured soil parameters data using OK, CK, and RK Models.
Generally, scatter plot is a tool for quality control and accu-
racy assessment of predictions. It is also useful when there
are large numbers of sample points and can provide infor-
mation about the strength of a relationship between two
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Abbreviation Description

SL Sandy Loam

SL-L-SCL Sandy Loam-Loam-Sandy Clay Loam

SCL Sandy Clay Loam

LS-SL Loamy sand-Sandy Loam

LS Loamy Sand

L-SCL-CL Loam-Sandy Clay Loam-Clay Loam

L-SCL Loam-Sandy Clay Loam

L Loam

L-CL Loam-Clay Loam

SCL-CL Sandy Clay Loam-Clay Loam

CL Clay Loam

Table 7. Legend of the soil texture map.
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variables. Based on Fig. 5, all the scatter plots confirm the
results of RMSE (Table 4). The strongest relationships
between measured and estimated for AW, Clay, EC, Gravel,
Gyps, Sand, and Lime are observed in CK, RK, OK, RK,
CK, RK, and RK models, respectively. 

Conclusions

Creating accurate soil maps is of vital importance in
landscape ecology and rangeland management. In this
study, soil data and some ancillary variables, including
ETM+ images, elevation, slope, and precipitation of
Poshtkouh rangelands were collected. The estimation maps
of relevant soil parameters were created and compared to
each other using different geostatistical methods as the next
step. Based on the cross-validation analyses, the results
suggest that the application of the ancillary data (ETM+
images and environmental variables) have increased the
estimation accuracy in most cases.

The better efficiency of RK over OK and CK for esti-
mating most of the soil attributes might be due to the better
capturing of the variations of the residuals of these parame-
ters in the RK framework. 

Although with very low differences for estimating the
EC, OK has represented the lowest estimation RMSE com-
pared to those of the CK and RK. However, according to
Table 6, considering the QQ-plots along with the sum and
average errors besides the RMSE criterion, RK could be
suggested as the best estimation approach for EC. This
implies the positive role of remote sensing and environ-
mental variables as ancillary variables in improving the
estimations.

In the majority of parameters, taking the secondary vari-
ables into account has increased the estimation accuracy.
Therefore, it is revealed that to improve predictions of soil
attributes, it would be very beneficial to use the cheap and
easily available ancillary data such as satellite images and
elevation data. To achieve the best mapping performance,
the secondary variables such as environmental variables
and satellite images should be present for the whole study
area. Several studies have suggested the use of satellite
images and environmental variables in the framework of
CK and RK to improve the accuracy of estimations [9, 12,
14, 23, 34]. The success of this idea depends on the strength
of relationships between soil and the ancillary data.  

Characterization of soil parameters such as texture,
available moisture, and salinity, etc., is a vital step in range-
land rehabilitation, management, and ecological modelling,
these methods are considerably useful. In the mentioned
applications, a detailed map of soil properties can be more
efficient than traditional soil maps. These continuous soil
maps also will benefit rangeland scientists to describe the
distribution of soil patterns. The created soil attribute maps
could be used as input for the ecological models such as
species distribution models. 

Finally, it can be concluded that the geostatistical
approaches can successfully model the spatial variability of
different soil properties in rangelands. This is specifically

because the geostatistical methods not only take the spatial
variability of target parameters into account but they also
offer estimation reliability measures such as estimation
error and cross validation analyses parameters. The applied
framework in this study, which is fast and automated in Arc
GIS software, can be recommended for similar cases. Using
satellite images with higher spatial and spectral resolution
as ancillary variable can be suggested to increase the esti-
mation accuracies. 
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